

SWIS: SELF-SUPERVISED REPRESENTATION LEARNING FOR WRITER INDEPENDENT OFFLINE SIGNATURE VERIFICATION

Siladittya Manna¹, Soumitri Chattopadhyay², Saumik Bhattacharya³, Umapada Pal¹

¹ Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata ² Department of Information Technology, Jadavpur University, Kolkata ³ Department of Electronics and Electrical Communication Engineering, Indian Insitute of Technology Kharagpur

PAPER ID : 1985

- 1. The fundamental constituent of signatures is "strokes". Strokes of same letter vary from person to person.
- 2. Each signature is made up of a number of strokes, shifted by spatial coordinates.
- 3. The primary motivation is to learn representations such that a signature image can be represented in terms of decorrelated stroke information.

Inse I.1

NYMSE

d.

Pre-training Task

- 1. We divide each signature image into 169 patches (32 X 32) with an overlap of 16 pixels.
- 2. The patches are then passed through the ResNet18 [1] encoder and again reshaped to 13 X 13, such that each pixel in the output feature map represent each patch in the input, or each stroke.
- 3. Global Average Pooling is applied over the feature map and then passed through the projector to obtain the final feature vector.

Loss Function

- 1. The loss function is of similar mathematical form as Barlow Twins [2] framework.
- 2. We diagonalize the cross-covariance matrix instead of the cross-correlation matrix as in Barlow Twins framework.
- 3. We L2 normalize the features and subtract the mean along the batch dimension.

$$\mathcal{L}_{C} = \frac{1}{N} \sum_{i=1}^{D} \left(\sum_{\substack{j=1\\j\neq i}}^{D} \left(\sum_{k=1}^{N} z_{k}^{i} \cdot z_{k}^{\prime j} \right)^{2} + \left(\sum_{k=1}^{N} z_{k}^{i} \cdot z_{k}^{\prime i} - 1 \right)^{2} \right)$$

Downstream Task

- 1. The downstream task in this work does not involve fine-tuning.
- 2. We extracted the features of the signature images from the frozen encoder and trained an SVM using the reference genuine signature images.
- 3. If the classifier predicted a forged signature of a writer as a different writer, then we considered it a correct prediction.
- 4. If the classifier predicted a genuine signature of a writer as a different writer, then we considered it a wrong prediction.

- 1. The image on the right hand side shows the comparison of clustering efficiency of the proposed method and SimCLR [3].
- 2. We can see that the clustering is better for the proposed method.

Below we can see the comparison of performance of SimCLR [3] and the proposed framework on 4 datasets, after pre-training and SVM classifier training on reference genuine signature images.

Method	ICDAR 2011 Dutch [8]			ICDAR 2011 Chinese [8]			BHSig260 Bengali [4]			BHSig260 Hindi [4]		
	Accuracy (%)	FAR	FRR	Accuracy (%)	FAR	FRR	Accuracy (%)	FAR	FRR	Accuracy (%)	FAR	FAR
SimCLR [3]	69.46	0.554	0.060	59.76	0.431	0.317	73.45	0.117	0.543	72.45	0.103	0.599
Proposed	77.62	0.316	0.133	64.68	0.278	0.583	72.04	0.367	0.116	72.43	0.104	0.598

Below we show the comparison of the proposed framework with some supervised models on Bengali and Hindi datasets.

Mathad	BHSig260	Bengali [4]	BHSig260 Hindi [4]			
Method	Accuracy (%)	FAR	FRR	Accuracy (%)	FAR	FRR	
Pal et al. [4]	66.18	0.3382	0.3382	75.53	0.2447	0.2447	
Dutta et al. [6]	84.90	0.1578	0.1443	85.90	0.1310	0.1509	
Dey et al. [5]	86.11	0.1389	0.1389	84.64	0.1536	0.1536	
Alaei et al. [7]	_	0.1618	0.3012	_	0.1618	0.3012	
Proposed	72.04	0.367	0.116	72.43	0.104	0.598	

Ablations on Hyperparameters on	CEDAR	[9] Dataset
---------------------------------	-------	-------------

Ablation type	Accuracy (%)	FAR (%)	FRR (%)
Best	83.8	11.8	18.7
Test Time AWGN <i>N</i> (0.0, 0.01)	76.84	32.42	17.0
Test Time Random Cropping	79.3	34.4	11.57

1. Effect of change in Projector Depth :

No discernible change in performance

- 2. Effect of change in pixel overlap between patches : Improvement in performance (1.2% increase in ACC for increase in 8 pixels of overlap, from 82.6% for 0 pixels to 83.8% for 8 pixels)
- 3. Effect of removal of Color Jitter augmentation :

Degradation in performance (0.7% decrease in ACC, 83.1%)

Conclusion

- 1. The proposed work does perform at par with SimCLR.
- 2. In comparison to the Supervised Learning algorithms, there is a lot of room for improvement for the proposed self-supervised framework.

References

- 1. He, K., Zhang, X., Ren, S., and Sun, J., "Deep residual learning for image recognition," in CVPR, 2016
- 2. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: "Barlow twins: Self-supervised learning via redundancy reduction". In: ICML (2021)
- Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: "A simple framework for contrastive learning of visual representations". In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (2020), <u>http://proceedings.mlr.press/v119/chen20j.html</u>
- 4. Pal, S., Alaei, A., Pal, U., and Blumenstein, M., "Performance of an offline signature verification method based on texture features on a large indic-script signature dataset," in DAS. IEEE, 2016
- 5. S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados, and U. Pal, ' "Signet: Convolutional siamese network for writer independent offline signature verification," arXiv preprint arXiv:1707.02131, 2017
- 6. A. Dutta, U. Pal, and J. Llados, "Compact correlated features for writer ' independent signature verification," in ICPR. IEEE, 2016.
- 7. A. Alaei, S. Pal, U. Pal, and M. Blumenstein, "An efficient signature verification method based on an interval symbolic representation and a fuzzy similarity measure," IEEE TIFS, 2017.
- 8. G. Alvarez, B. Sheffer, and M. Bryant, "Offline signature verification with convolutional neural networks," Technical report, Stanford University, 2016

Thank You